These post series aim to solve examples and problems from Introduction to Optics book which is writen by Frank L. Pedrotti, Leno M. Pedrotti and Leno S. Pedrotti.
Chapter 1: Nature of Lights
Example 1
An electron is accelerated to a kinetic energy Ek of 2.5 MeV. (a) Determine its relativistic momentum, de Broglie wavelength, and speed. (b) Determine the same properties for a photon having the same total energy as the electron.
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
// //Introduction to Optics //Chapter 1 Example 1 //Cemalettin Yılmaz #include <iostream> #include <math.h> const long double c = 3.0e+8; //speed of light const long double h = 6.626e-34; //Plank's constatn long double m = 9.11e-31; //mass long double mc2 = (m)*pow(c,2.0); //mc^2 const long double eV = 1.6e-19; // 1eV = 1.6*10^-19 J auto calculate_p (auto E, auto mass){ return (sqrt(pow(E,2)-pow((mass)*pow(c,2),2)))/c; }; auto calculate_wl (auto p){ return h/p; }; auto calculate_v (auto E, auto p){ return (p*pow(c,2))/E; }; int main () { long double Ek = 2.5e+6; //2.5MeV std::cout.precision(5); std::cout << "(A) For m = 9.11e-31 "; std::cout << "The electron's total energy E = mc^2 + Ek\n" << std::scientific; std::cout << "mc^2 = "<< mc2 << " J \n"; std::cout << "Ek = "<< Ek << " eV \n"; mc2=mc2/eV; std::cout << "Convert J to eV for mc^2: " << mc2 << "eV \n"; std::cout << "Total energy E = " << mc2 + Ek << " eV\n"; std::cout << "Total energy E = " << (mc2 + Ek)*eV << " J\n"; std::cout << "p (momentum) = " << calculate_p((mc2 + Ek)*eV,m) << " kg.m/s\n"; std::cout << "Wave Lenght(^) = " << calculate_wl(calculate_p((mc2 + Ek)*eV,m)) << " m\n"; std::cout << "V speed = " << calculate_v((mc2 + Ek)*eV,calculate_p((mc2 + Ek)*eV,m)) << " m/s\n"; std::cout << "(B) For m = 0 "; m = 0.0; std::cout << "p (momentum) = " << calculate_p((mc2 + Ek)*eV,m) << " kg.m/s\n"; std::cout << "Wave Lenght(^) = " << calculate_wl(calculate_p((mc2 + Ek)*eV,m)) << " m\n"; std::cout << "V speed = " << calculate_v((mc2 + Ek)*eV,calculate_p((mc2 + Ek)*eV,m)) << " m/s\n"; return 0; } |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
// (A) For m = 9.11e-31 The electron's total energy E = mc^2 + Ek mc^2 = 8.19900e-014 J Ek = 2.50000e+006 eV Convert J to eV for mc^2: 5.12438e+005eV Total energy E = 3.01244e+006 eV Total energy E = 4.81990e-013 J p (momentum) = 1.58322e-021 kg.m/s Wave Lenght(^) = 4.18515e-013 m V speed = 2.95628e+008 m/s (B) For m = 0 p (momentum) = 1.60663e-021 kg.m/s Wave Lenght(^) = 4.12415e-013 m V speed = 3.00000e+008 m/s |
Example 2
A certain sensitive radar receiver detects an electromagnetic signal of frequency 100 MHz and power (energy/time) 6.63 x 10^-16 J/s
a. What is the wavelength of a photon with this frequency?
b. What is the energy of a photon in this signal? Express this energy in J and in eV.
c. How many photons/s would arrive at the receiver in this signal?
d. What is the energy (in J and in eV) of a visible photon of wavelength 555 nm?
e. How many visible (wavelength 555 nm) photons/s would correspond to a detected power of 6.63 x 10^-16 J/s
f. What is the energy (in J and in eV) of an X-ray of wavelength 0.1 nm?
g. How many X-ray photons/s would correspond to a detected power of 6.63 x 10^-16 J/s
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
// //Introduction to Optics //Chapter 1 Example 2 //Cemalettin Yılmaz #include <iostream> #include <math.h> const long double c = 3.0e+8; //speed of light const long double eV = 1.6e-19; // 1eV = 1.6*10^-19 J const long double h = 6.626e-34; //Plank's constatn long double wave = 0.0e+1; auto calculate_wl (auto v){ return c/v; }; auto calculate_energy (auto v,bool Joule, bool wl,auto Wavelength){ if (wl){ if (Joule) return h*c/Wavelength; else return (h*c/Wavelength)/eV; } else{ if (Joule) return h*v; else return (h*v)/eV; } }; auto calculate_number_photon (auto E,auto P){ return P/E; }; int main () { long double f = 100e+6; // 100MHz long double P = 6.63e-16; //Power J/s std::cout.precision(3); std::cout << "a) Wavelength of a photon with this frequency " << f << " is = "<< std::scientific; std::cout << calculate_wl(f) << "\n"; std::cout << "b) The energy of a photon in this signal is = "<< calculate_energy(f,false,false,wave) << " eV or " << calculate_energy(f,true,false,wave) << " J\n"; std::cout << "c) Number of photons is = " << calculate_number_photon(calculate_energy(f,true,false,wave),P) << "\n"; wave = 555e-9; std::cout << "d) The energy of a photon with 555nm Wavelength = " << calculate_energy(f,false,true,wave) << " eV or " << calculate_energy(f,true,true,wave) << " J\n"; std::cout << "e) Number of photons is (555nm) = " << calculate_number_photon(calculate_energy(f,true,true,wave),P) << "\n"; wave = 1e-10; std::cout << "f) The energy of a photon with 0.1nm Wavelength = " << calculate_energy(f,false,true,wave) << " eV or " << calculate_energy(f,true,true,wave) << " J\n"; std::cout << "g) Number of photons is (0.1nm) = " << calculate_number_photon(calculate_energy(f,true,true,wave),P) << "\n"; return 0; } |
Output:
1 2 3 4 5 6 7 8 |
// a) Wavelength of a photon with this frequency 1e+008 is = 3.000e+000 b) The energy of a photon in this signal is = 4.141e-007 eV or 6.626e-026 J c) Number of photons is = 1.001e+010 d) The energy of a photon with 555nm Wavelength = 2.239e+000 eV or 3.582e-019 J e) Number of photons is (555nm) = 1.851e+003 f) The energy of a photon with 0.1nm Wavelength = 1.242e+004 eV or 1.988e-015 J g) Number of photons is (0.1nm) = 3.335e-001 |
Example 3
Consider a 5 milliwatt Helium-Neon laser emitting a “pencil-like” beam with a divergence angle a of 1.3 milliradians. The laser cavity is designed so that the beam emerges from a surface area 2.5*10^-3 cm^2 at the output mirror.
a. Determine the solid angle in terms of R and a
b. Determine the radiance of this laser light source in units of W/cm2*sr.
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
// //Introduction to Optics //Chapter 1 Example 3 //Cemalettin Yılmaz #include <iostream> #include <math.h> long double calculate_r (long double a, long double R){ return R*tan(a/2); }; long double calculate_delta_At (long double a, long double R){ return M_PI*(pow(calculate_r(a,R),2)); }; long double calculate_solid_angle (long double a, long double R=1){ return calculate_delta_At(a,R)/pow(R,2); }; auto calculate_Ie (auto P, auto angle){ return (P/angle); }; auto calculate_radiance (auto Ie, auto area, auto angle){ return Ie/(area*cos(angle*M_PI/180)); }; int main () { long double total_radiant_power = 5e-3; // 5 miliWatt long double divergence_angle = 1.3e-3; // 1.3 miliradians long double surface_area = 2.5e-3; //2.5 cm^2 long double angle = 0.0; std::cout.precision(3); std::cout << "a)Solid Angle (w) in terms of R's and a's " << std::scientific; std::cout << calculate_solid_angle(divergence_angle) << " sr \n"; std::cout << "b)Radiance of laser light source"; std::cout << calculate_radiance(calculate_Ie(total_radiant_power,calculate_solid_angle(divergence_angle)),surface_area,angle) << " W/(cm^2*sr) \n"; return 0; } |
Output:
1 2 3 |
// a)Solid Angle (w) in terms of R's and a's 1.327e-006 sr b)Radiance of laser light source1.507e+006 W/(cm^2*sr) |
Problems
1-6 , 9-10, 12-17 Problems
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
// //Introduction to Optics //Chapter 1 Problems //Cemalettin Yılmaz #include <iostream> #include <math.h> const long double h = 6.626e-34; //Plank's constatn long double m = 9.11e-31; //mass long double m_p = 1.673e-27; //mass const long double c = 3.0e+8; //speed of light long double mc2 = (m)*pow(c,2.0); //mc^2 const long double eV = 1.6e-19; // 1eV = 1.6*10^-19 J auto calculate_p (auto E, auto mass,bool Joule){ //Relativistic momentum if (Joule) return (sqrt(pow(E,2)-pow((mass)*pow(c,2),2)))/c; else return (sqrt(pow(E,2)-pow((mass)*pow(c,2)/eV,2)))/c; }; auto calculate_p_mass_speed (auto speed, auto mass){ return mass*speed; }; auto calculate_wl_mass_speed (auto speed, auto mass){ return h/calculate_p_mass_speed(speed,mass); }; auto calculate_wl (auto p){ return h/p; }; auto calculate_power (auto e, auto t){ return e/t; }; auto energy_of_light (auto n, auto v){ return n*v*h; }; auto convert_WLtoV_photons (auto wl){ return c/wl; }; auto convert_VtoWL_photons (auto v){ return c/v; }; auto calculate_energy (auto v,bool Joule, bool wl,auto Wavelength){ if (wl){ if (Joule) return h*c/Wavelength; else return (h*c/Wavelength)/eV; } else{ if (Joule) return h*v; else return (h*v)/eV; } }; auto calculate_mc2 (auto m){ return ((m)*pow(c,2.0)); }; auto calculate_number_of_photon (auto E,auto v){ return (E/(h*v)); }; auto calculate_time_with_distance (auto d, long double speed=c){ return (d/speed); }; auto calculate_radiant_intensity (auto p){ return (p/(4*M_PI)); }; auto calculate_radiant_excitance (auto p,auto area){ return (p/area); }; auto calculate_radiant_irradiance (auto p,auto r){ return (p/(4*M_PI*pow(r,2))); }; auto calculate_radiant_flux_hole (auto E,auto r){ return (E*M_PI*pow(r,2)); }; auto divergence_angle (auto r,auto L){ return tan(r/L); }; long double calculate_delta_At (long double r){ return M_PI*(pow(r,2)); }; long double calculate_solid_angle (long double r,long double L){ return calculate_delta_At(r)/pow(L,2); }; auto calculate_Ie (auto P, auto angle){ return (P/angle); }; auto calculate_radiance (auto Ie, auto area, auto angle){ return Ie/(area*cos(angle*M_PI/180)); }; int main () { std::cout.precision(3); std::cout << "1.Problem \na)de Broglie wavelength of a golf ball of mass 50 g moving at 20m/s is " << std::scientific; std::cout << calculate_wl_mass_speed(20,50e-3) << " m \n"; std::cout << "b)de Broglie wavelength of an electron with kinetic energy of 10eV " << calculate_wl(calculate_p((mc2/eV + 10)*eV,m,true)) << " m \n"; std::cout << "2.Problem \nHumans eyes threshold sensivity is 100 photons per second in this case threshold in watts of power for 550nm wavelength is "; std::cout << calculate_power(energy_of_light(100,convert_WLtoV_photons(550e-9)),1) << " W \n"; std::cout << "3.Problem \nEnergy of light photons at the ends of visible spectrum that is, at wavelengths of 380 and 770nm\na)380nm: "; std::cout << calculate_energy(1,false,true,380e-9) << " eV \nb)770nm: "; std::cout << calculate_energy(1,false,true,770e-9) << " eV \n"; std::cout << "4.Problem \nWavelength and momentum of an electron whose energy equals the rest mass energy of electron is:\nMomentum: "; std::cout << mc2/c << " J \nb)Wavelenght: "; std::cout << calculate_wl(mc2/c) << " m \n"; std::cout << "5.Problem \nRest mass energy of electron is: "; std::cout << (mc2)/eV << " eV\n"; std::cout << "6.Problem \nRelativistic momentum for 1 million volts potential difference is: "; std::cout << calculate_p(((mc2/eV)+1e+6),m,false)*c << " eV/c\n"; std::cout << "9.Problem \nA proton is accelerated to kinetic energy of 2 billion electron volts (2GeV) so that\na)Momentum is : "; std::cout << calculate_p((calculate_mc2(m_p)+(2e+9*eV)),m_p,true) << " kg.m/s\nb)de Broglie wavelength is: "; std::cout << calculate_wl(calculate_p((calculate_mc2(m_p)+(2e+9*eV)),m_p,true)) << " kg.m/s\nc)Wavelength of a photon with the same total energy : "; std::cout << calculate_wl(calculate_p((calculate_mc2(m_p)+(2e+9*eV)),0,true)) << " m\n"; std::cout << "10.Problem \nSolar radiation is incident at the Earth's surface at an average of 1000W/m^2 on a surface normal to the rays. For a mean wavelength of 550 nm so that,\nNumber of photons falling on 1cm^2 of surface each second : "; std::cout << calculate_number_of_photon((1000*1e-4),convert_WLtoV_photons(550e-9)) << "\n"; std::cout << "12.Problem \nBand of frequencies of electromagnetic radiation capable of producing a visiual sensation in the normal eye (380-770nm) is : "; std::cout << "Band of frequencies " << convert_WLtoV_photons(380e-9) << " to " << convert_WLtoV_photons(770e-9) << " Hz\n"; std::cout << "13.Problem \nLength of half-wave dipole antenna designed to brodcast FM radia waves at 100MHz is : "; std::cout << convert_VtoWL_photons(100e+6)/2 << " m\n"; std::cout << "14.Problem \nLength of quater-wave dipole antenna designed to brodcast FM radia waves at 90MHz is : "; std::cout << convert_VtoWL_photons(90e+6)/4 << " m\n"; std::cout << "15.Problem \nA soprano's voice is sent by radio waves to a listener in a 90 km away. \na)Voice reach to the listener : "; std::cout << calculate_time_with_distance(90e+3) << " second\nb)If sound speed is 340m/s with same time distance will be "; std::cout << 340*calculate_time_with_distance(90e+3) << " m\n"; std::cout << "16.Problem \nA small, monochromatic light source, radiating at 500 nm , is rated at 500W\na)If the source radiates uniformly in all directions, radiant intensity is :"; std::cout << calculate_radiant_intensity(500) << " W/sr\nb)If the surface area of the source is 5cm^2, radiant excitance is: "; std::cout << calculate_radiant_excitance(500,5e-4) << " W/m^2\nc)Irradiance on a screen situated 2 m from the source, with its surface normal to the radiant flux so that irradiance is : "; std::cout << calculate_radiant_irradiance(500,2) << " W/m^2\nd)If the receiving screen contains a hole with diameter 5 cm, number of radiant flux gets trough is: "; std::cout << calculate_radiant_flux_hole(calculate_radiant_irradiance(500,2),(5e-2/2)) << " W\n"; std::cout << "17.Problem \n15 mW helium-neon laser beam delivers a spot of light 5mm in diameter across a room 15 m wide. The beam radiates from a small circular area of diameter 0.5 mm at the output mirror of the laser. Assume that the beam irradiance is constant across the diverging beam. So that;\na)Beam divergence angle of this laser is :"; std::cout << divergence_angle((5e-3)/2,15)*180/M_PI << " degree\nb)What solid angle is the laser sending its beam : "; std::cout << calculate_solid_angle((5e-3)/2,15) << " sr\nc)What is the radiance at the spot on the wall 15 m from the laser: "; std::cout << calculate_radiant_irradiance(1.5e-3,(5e-3)/2)*4 << " W/m^2\nd)What is the radiance of the laser"; std::cout << calculate_radiance(calculate_Ie(1.5e-3,calculate_solid_angle((5e-3)/2,15)),M_PI*pow(2.5e-4,2),0) << " W\n"; return 0; } |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
// 1.Problem a)de Broglie wavelength of a golf ball of mass 50 g moving at 20m/s is 6.626e-034 m b)de Broglie wavelength of an electron with kinetic energy of 10eV 3.881e-010 m 2.Problem Humans eyes threshold sensivity is 100 photons per second in this case threshold in watts of power for 550nm wavelength is 3.614e-017 W 3.Problem Energy of light photons at the ends of visible spectrum that is, at wavelengths of 380 and 770nm a)380nm: 3.269e+000 eV b)770nm: 1.613e+000 eV 4.Problem Wavelength and momentum of an electron whose energy equals the rest mass energy of electron is: Momentum: 2.733e-022 J b)Wavelenght: 2.424e-012 m 5.Problem Rest mass energy of electron is: 5.124e+005 eV 6.Problem Relativistic momentum for 1 million volts potential difference is: 1.423e+006 eV/c 9.Problem A proton is accelerated to kinetic energy of 2 billion electron volts (2GeV) so that a)Momentum is : 1.486e-018 kg.m/s b)de Broglie wavelength is: 4.459e-016 kg.m/s c)Wavelength of a photon with the same total energy : 4.224e-016 m 10.Problem Solar radiation is incident at the Earth's surface at an average of 1000W/m^2 on a surface normal to the rays. For a mean wavelength of 550 nm so that, Number of photons falling on 1cm^2 of surface each second : 2.767e+017 12.Problem Band of frequencies of electromagnetic radiation capable of producing a visiual sensation in the normal eye (380-770nm) is : Band of frequencies 7.895e+014 to 3.896e+014 Hz 13.Problem Length of half-wave dipole antenna designed to brodcast FM radia waves at 100MHz is : 1.500e+000 m 14.Problem Length of quater-wave dipole antenna designed to brodcast FM radia waves at 90MHz is : 8.333e-001 m 15.Problem A soprano's voice is sent by radio waves to a listener in a 90 km away. a)Voice reach to the listener : 3.000e-004 second b)If sound speed is 340m/s with same time distance will be 1.020e-001 m 16.Problem A small, monochromatic light source, radiating at 500 nm , is rated at 500W a)If the source radiates uniformly in all directions, radiant intensity is :3.979e+001 W/sr b)If the surface area of the source is 5cm^2, radiant excitance is: 1.000e+006 W/m^2 c)Irradiance on a screen situated 2 m from the source, with its surface normal to the radiant flux so that irradiance is : 9.947e+000 W/m^2 d)If the receiving screen contains a hole with diameter 5 cm, number of radiant flux gets trough is: 1.953e-002 W 17.Problem 15 mW helium-neon laser beam delivers a spot of light 5mm in diameter across a room 15 m wide. The beam radiates from a small circular area of diameter 0.5 mm at the output mirror of the laser. Assume that the beam irradiance is constant across the diverging beam. So that; a)Beam divergence angle of this laser is :9.549e-003 degree b)What solid angle is the laser sending its beam : 8.727e-008 sr c)What is the radiance at the spot on the wall 15 m from the laser: 7.639e+001 W/m^2 d)What is the radiance of the laser8.754e+010 W |
Today quote: “Easy-to-read things are hard to write” – Stephen King